Голосования

Какой теорией происхождения жизни вы придержавайтесь?
 

Узнал новое?

Поделись с друзьями:

Наша кнопка

88x31 Код




Проблемы и перспективы поиска внеземных цивилизаций.
(0 голоса, среднее 0 из 5)
Внеземная жизнь

 

 

Поиск и исследование внеземных форм жизни. Предмет и задачи.

 

Определение жизни на других планетах, кроме Земли, является важной задачей для ученых, занимающихся вопросами возникновения и эволюции жиз-ни. Наличие или отсутствие ее на планете оказывает существенное влияние на ее атмосферу и другие физические условия.

Исследования превращений в поверхностных слоях планет с учетом воз-можных результатов деятельности человека позволит уточнить наши представле-ния о роли биологических процессов в прошлом и настоящем Земли.

С этой точки зрения результаты экзобиологических исследований могут быть полезными и в решении современных задач в области биологии.

Занос чужеродных форм жизни может также привести на Земле к самым неожиданным и трудно предугадываем последствиям.

Обнаружение жизни вне Земли, несомненно, имеет и большое значение для разработки фундаментальных проблем происхождения и сущности жизни.

Непосредственной целью предстоящих в ближайшем будущем экзобио-логических экспериментов с помощью автоматических биологических лаборато-рий (АБЛ) является получение ответа на вопрос о наличии или отсутствии жизни (или ее признаков) на планете. Обнаружение внеземных форм жизни существен-но усугубило бы наше понимание сущности жизненных процессов и явления жизни в целом. Отсутствие жизни на других планетах Солнечной системы, на-пример, имело бы также большое значение, подчеркивая специфическую роль земных условий в процессах становления и эволюции живых форм.

Неясно, до какой степени внеземные формы могут быть сходными с на-шими земными организмами по биохимическим основам их жизненных процес-сов.

При рассмотрении проблемы обнаружения внеземной жизни надо при-нимать во внимание разные этапы эволюции органического вещества и организ-мов, с которыми в принципе можно встретиться на других планетах. Например, в отношении Марса могут представиться различные возможности от обнаружения сложных органических соединений или продуктов абиогенного синтеза и до су-ществования развитых форм жизни. На Марсе к настоящему времени закончи-лась только химическая  эволюция, которая привела к абиогенному образованию (как это было в сове время на Земле) аминокислот, сахаров, жирных кислот, угле-водов, возможно, белков, но жизнь как таковая на планете, видимо, отсутствует. Эти вещества в той или иной степени отличаются от аналогичных соединений, встречающихся на Земле.

Возможно, что на Марсе могут быть обнаружены: первичные протобио-логические открытые системы, отделенные мембранами от окружающей среды (относительно простые примитивные формы жизни, аналогичные нашим микро-организмам); более сложные формы, подобные нашим простым растениям и на-секомым; следы существовавшей ранее или существующей и ныне жизни; остат-ки высокоразвитой жизни (цивилизации) и, наконец, можно констатировать пол-ное отсутствие жизни на Марсе (более подробно проблема жизни на Марсе рас-сматривается выше).

В настоящей главе рассматриваются теоретические предпосылки, крите-рии существования жизни, предполагаемые методы обнаружения живых систем на других планетах.

 

Критерии существования и поиска живых систем.

 

Наши представления о сущности жизни основаны на данных по исследо-ванию жизненных явлений на Земле. В то же время решение проблемы поиска жизни на других планетах предполагает достоверную идентификацию жизнен-ных явлений в условиях, существенно отличных от  земных. Следовательно, тео-ретические методы и существующие приборы для обнаружения жизни должны основываться на системе научных критериев и признаков, присущих явлению жизни в целом.

Можно считать, что ряд фундаментальных свойств живых систем земного происхождения действительно имеет ряд общих свойств, и поэтому эти свойства, несомненно, должны характеризовать и внеземные организмы. Сюда можно от-нести такие хорошо известные биологам и наиболее характерные признаки жи-вого, как способность организмов реагировать на изменение внешних условий, метаболизм, рост, развитие, размножение организмов, наследственность и из-менчивость, процесс эволюции.

Не будет сомнения в принадлежности к живым системам неизвестного объекта при обнаружении у него перечисленных признаков. Но реакция на внеш-нее раздражение присуща и неживым системам, изменяющим свое физическое и химическое состояние под влиянием внешних воздействий. Способность к росту свойственна кристаллам, а обмен энергией и веществом с внешней средой харак-терен для открытых химических систем. Поиски внеземной жизни должны по-этому основываться на применении совокупности разных критериев существова-ния и методов обнаружения живых форм. Такой подход должен повысить веро-ятность и достоверность обнаружения инопланетной жизни.

 

О химической основе жизни.

 

Исследования последних лет показали возможность синтеза разнообраз-ных биологически важных веществ из простых исходных соединений типа ам-миака, метана, паров воды, входивших в состав первичной атмосферы Земли.

В лабораторных условиях в качестве необходимой для такого синтеза энергии используется ионизирующая радиация, электрические разряды, ультра-фиолетовый свет. Таким путем были получены аминокислоты, органические ки-слоты, сахара, нуклеотиды, нуклеозидфоссфаты, липиды, вещества порфирино-вой природы и целый ряд других. По-видимому, можно считать установленным, что большинство характерных для жизни молекул произошло на Земле абиоген-ным путем и, что еще важнее, их синтез может происходить и сейчас в условиях других планет без участия живых систем.

Следовательно, само наличие сложных органических веществ на других планетах не может служить достаточным признаком наличия жизни. Примером в этом отношении могут быть углеродистые хондриты метеоритного происхожде-ния, в которых содержится до 5-7% органического вещества (более подробно о хондритах ниже).

Наиболее характерная черта химического состава живых систем земного происхождения заключается в том, что все они включают углерод. Этот элемент образует молекулярные цепочки, на основе которых построены все главные био-органические соединения, и прежде всего белки и нуклеиновые кислоты, а био-логическим растворителем служит вода. Таким образом, единственная известная нам жизнь, ее основа углеродоорганическая белково - нуклеиновая - водная. В литературе обсуждается вопрос о возможности построения живых систем на дру-гой органической основе, когда, например, вместо углерода в скелет органиче-ских молекул включается кремний, а роль воды как биологического растворителя выполняет аммиак. Такого рода теоретическую возможность практически было бы очень трудно учесть при выборе методов обнаружения и конструирования со-ответствующей аппаратуры, поскольку наши научные представления о жизни ос-нованы только на изучении свойств земных организмов.

Роль и значение воды в жизнедеятельности организмов также широко об-суждается в связи с возможной заменой аммиаком или другими жидкостями, ки-пящими при низких температурах (сероводород, фтористый водород). Действи-тельно, вода обладает рядом свойств, обеспечивающих ее роль в качестве биоло-гического растворителя. Сюда относятся амфотерный характер воды и ее спо-собность к самодиссоциации на катион Н+ и анион ОН-, высокий дипольный мо-мент и диэлектрическая постоянная, малая вязкость, высокие удельная теплоем-кость и скрытая теплота превращения, предохраняющие организмы от быстрых изменений температуры. Кроме того, роль воды в биологических системах вклю-чает факторы стабилизации макромолекул, которые обеспечиваются общими структурными особенностями воды.

В целом можно считать, что углеродоорганическая - водная химическая основа жизни является общим признаком живых систем.

Характерным признаком структурной организации живых систем являет-ся одновременное включение в их состав, помимо основных химических элемен-тов С, Н, О, N, целого ряда других, и прежде всего серы и фосфора. Это свойство может рассматриваться в качестве необходимого признака существования живой материи. Специфичность живой материи, не смотря на все это, нельзя сводить лишь к особенностям физико - химического характера ее основных составных элементов - структурных единиц живого, имеющих абиогенное происхождение.

 

Общие динамические свойства живых систем.

 

В качестве исходных представлений при интерпретации экзобиологиче-ских экспериментов необходимо принимать во внимание динамические свойства живых систем. Развитие и эволюция биологических систем шли в основном по пути совершенствование форм взаимодействия между элементами и способов ре-гуляции состояния системы в целом. Жизнь неразрывно связана с существование открытых систем, свойства которых во многом зависят от соотношения скоро-стей процессов обмена энергией и массой с окружающей средой.

Результаты исследования динамических свойств открытых систем мето-дами математического моделирования позволили объяснить целый ряд их харак-терных черт, в частности установление в системе при сохранении постоянных внешних условий стационарного колебательного режима, который наблюдается на разных уровнях биологической организации. Это свойство является важным признаком высокой степени организации системы, что в свою очередь можно рассматривать как необходимые условия жизни.

 

Роль света в поддержании жизни.

 

Важным аспектом проблемы внеземной жизни является необходимость внешнего притока энергии для ее развития. Солнечный свет, главным образом в ультрафиолетовой области спектра, играл существенную роль в процессах абио-генного синтеза необходимым притоком свободной энергии, но заключалось также и в фотохимическом ускорении дальнейших превращений. Жизнедеятель-ность первичных живых систем также могла во многом определяться фотохими-ческими реакциями входящих в их состав соединений. Многие организмы, не имеющие прямого отношения к современному фотосинтезу, тем не менее изме-няют свою активность при освещении. Так, явление фотореактивации клеток ор-ганизмов видимым светом после поражающего действия ультрафиолетовых лу-чей, очевидно, является в эволюционном отношении древним процессом, воз-никшим в то время, когда первичные живые системы выработали механизмы за-щиты от деструктивного действия падавшего на Землю ультрафиолетового света.

Следует отметить, что свет мог и не являться единственным источником энергии на ранних этапах эволюции органических соединений. Эту роль могла выполнять и химическая энергия, освобождаемая, например, в реакциях конден-сации в неорганический полифосфат или в реакциях окисления, впоследствии составивших энергетическую основу хемосинтеза. Однако в целом жизнь для своего возникновения и развития требует, очевидно, постоянного внешнего при-тока свободной энергии, роль которого на Земле и выполняет солнечный свет. Поэтому свет и играет важную роль на всех этапах эволюции жизни, начиная с абиотического синтеза первичных живых систем и кончая современным фото-синтезом, обеспечивающим образования органических веществ на Земле.

Очевидно, существование фотосинтеза в той или иной форме как процес-са полезной утилизации энергии в биологических системах является важным критерием существования развитой жизни.

Можно заключить, что независимо от конкретной химической структуры фотосинтетического аппарата общим свойством фотобиологических процессов утилизации световой энергии является наличие такой последовательности реак-ций: поглощение света и возбуждение молекул пигментов - делокализация элек-трона (дырки) - перенос электрона (дырки) по открытой цепи окислительно - восстановительных соединений - образование конечных продуктов с запасанием в них энергии света. Существование такой фотосинтетической цепи является общим для большинства фотобиологических процессов и может рассматриваться в качестве необходимого условия существования жизни.

 

Можно выдвинуть общие принципы, которыми следует руководствовать-ся при определении критериев существования и поиска внеземной жизни.

1. Основным свойством живой материи является ее существование в виде открытых самовоспроизводящихся систем, которые обладают структу-рами для сбора, хранения, передачи и использования информации.

2. Углеродосодержащие  органические соединения и вода как раствори-тель составляют химическую основу жизни.

3. Необходимым условием жизни является утилизация энергии света, ибо прочие источники энергии обладают на несколько порядков меньшей мощностью.

4. В живых системах протекают сопряженные химические процессы, в которых происходит передача энергии.

5. В биологических системах могут преобладать асимметрические моле-кулы, осуществляющие оптическое вращение.

6. Различные организмы, существующие на планете, должны обладать рядом сходных основных черт.

 

 

Методы обнаружения внеземной жизни.

 

Как уже говорилось, наиболее сильным доказательством присутствия жизни на планете будет, конечно, рост и развитие живых существ. Поэтому, когда сравниваются и оцениваются различные методы обнаружения жизни вне Земли, преимущество отдается тем методам, которые позволяют с достоверностью уста-новить размножение клеток. А поскольку наиболее распространенными в приро-де являются микроорганизмы, при поиске жизни вне Земли прежде всего следует искать микроорганизмы. Микроорганизмы на других планетах могут находиться в грунте, почве или атмосфере, поэтому разрабатываются различные способы взятия проб для анализов. В одном из таких приборов - “Гулливере” - предложе-но остроумное приспособление для взятие пробы для посева. По окружности прибора расположено три небольших цилиндрических снаряда, к каждому сна-ряду прикреплена липкая силиконовая нить. Взрыв пиропатронов отбрасывает снаряды на несколько метров от прибора. Затем силиконовая нить наматывается и, погружаясь при этом в питательную среду, заражает ее частицами прилипшего к ней грунта.

Размножение организмов в питательной среде может быть установлено с помощью различных автоматических устройств, одновременно регистрирующих нарастание мутности среды (нефелометрия), изменение реакции питательной среды (потенционометрия), нарастание давления в сосуде за счет выделяющегося газа (манометрия).

Очень изящный и точный способ основан на том, что в питательную сре-ду добавляют органические вещества (углеводы, органические кислоты и другие), содержащие меченный углерод.

Размножающиеся микроорганизмы будут разлагать эти вещества, а коли-чество выделившегося в виде углекислоты радиоактивного углерода определит миниатюрный счетчик, прикрепленный к прибору. Если питательная среды будет содержать различные вещества с меченным углеродом (например, глюкозу и бе-лок), то по количеству выделившейся углекислоты можно составить ориентиро-вочное представление о физиологии размножающихся микроорганизмов.

Чем больше разнообразных методов будет использовано для выявления обмена веществ у размножающихся микроорганизмов, тем больше шансов полу-чить достоверные сведения, так как некоторые методы могут подвести, дать ошибочные данные. Например, питательная среда может помутнеть и от попав-шей в нее пыли (как, возможно, было с “Викингами” в 1976 г., см. выше). Когда клетки микроорганизмов размножаются, интенсивность всех регистрируемых и передаваемых на Землю показателей непрерывно нарастает. Динамика всех этих процессов хорошо известна, а она надежный критерий действительного роста и размножения клеток. Наконец, на борту автоматической станции может быть два контейнера с питательной средой, и как только в них начинается нарастание из-менений, в один из них автоматически будет добавлено сильнодействующее ядо-витое вещество, полностью прекращающее рост. Продолжающееся изменение показателей в другом контейнере будет надежным доказательством биогенного характера наблюдаемых процессов.

Конструируемые приборы не должны быть чрезмерно чувствительными, так как перспективы “открыть” жизнь там, где ее нет весьма неприятна.

С другой стороны, прибор не должен дать отрицательный ответ, если жизнь действительно существует на исследуемой планете. Именно поэтому на-дежность и чувствительность предполагаемой аппаратуры усиленно обсуждается и уже претворяется в жизнь.

Хотя размножение микроорганизмов и является единственным бесспор-ным признаком жизни, это не значит, что не существует иных приемов, позво-ляющих получить ценную информацию. Некоторые краски, соединяясь с орга-ническими веществами, дают комплексы, легко обнаруживаемые, так как они об-ладают способностью к адсобции волн строго определенной длины. Один из предложенных методов основан на применении масс - спектрометра, который ус-танавливает обмен изотопа кислорода О18, происходящий под влиянием фермен-тов микробов у таких соединений, как сульфаты, нитраты или фосфаты. Особен-но хорошо и, главное, разнообразно применение люминесценции. С ее помощью не только констатируют энзиматическую активность, но при применении некото-рых люминофоров возможно свечение ДНК, содержащейся в клетках бактерий.

Следующий этап в исследованиях - применение портативного микроско-па, снабженного поисковым устройством, способным отыскивать в поле зрения отдельные клетки.

Обсуждается также возможность использования электронного микроско-па для изучения структурных элементов микробной клетки, не видимых в опти-ческий микроскоп. Применение электронного микроскопа в сочетании с порта-тивным может чрезвычайно расширить возможности морфологических исследо-ваний, что, как мы знаем из современной биологии, особенно важно для изуче-ния внутренней молекулярной структуры составных элементов живого. Важной электронной особенностью является возможность сочетания ее с телевизионной техникой, поскольку они имеют общие элементы (источник электронов, электро-магнитные фокусирующие линзы, видиконы).

Специальные устройства будут передавать на Землю (в общем этот прин-цип уже использовался на практике) видимые микроскопические картины. Здесь уместно отметить, что в задачи экзобиологии входит обнаружение не только су-ществующей теперь жизни, но также палеобиологические исследования. АБЛ должна уметь обнаружить возможные следы бывшей жизни. В методическом от-ношении эта задача будет облегчена применением микроскопов с различным увеличением.

Самым сложным вопросом в методическом отношении будет возмож-ность существования форм жизни, более просто организованных, чем микроор-ганизмы. Действительно, эти находки, вероятно, представят гораздо больший ин-терес для решения проблемы возникновения жизни, чем обнаружение таких от-носительно живых существ, как микроорганизмы.

В методическом отношении экзобиология находится в более трудном по-ложении (несмотря на небольшой опыт запусков АБЛ), чем другие дисциплины, изучающие планеты с других точек зрения. Эти дисциплины имеют возможность изучать планеты на расстоянии с помощью различных физических методов и по-лучать очень ценную информацию о свойствах планет.

До сих пор мало методов, позволяющих аналогичным образом получить сведения о внеземной жизни. Для этого АБЛ должна находиться на поверхности планеты. Мы приближаемся к такой возможности. И трудно будет переоценить значение тех данных, которые мы тогда получим.

 

В заключение можно условно разделить все методы на три группы:

1. Дистанционные методы наблюдения определяют общую обстановку на планете с точки зрения наличия признаков жизни. Дистанционные ме-тоды связаны с использованием техники и приборов, расположенных как на Земле, так и на космических кораблях и искусственных спутни-ках планеты.

2. Аналогичные методы призваны произвести непосредственный физико - химический анализ свойств грунта и атмосферы на планете при по-садке АБЛ. Применение аналитических методов должно дать ответ на вопрос о принципиальной возможности существование жизни.

3. Функциональные методы предназначаются для непосредственного об-наружения и изучения основных признаков живого в исследуемом об-разце. С их помощью предполагается ответить на вопрос о наличии роста и размножения, метаболизма, способности у усвоению питатель-ных веществ и других характерных признаков жизни.

 

АБЛ для экзобиологических исследований.

 

Хотя о пилотируемых полетах на другую планету в данное время вопрос не стоит (где человек уже вплотную визуально смог бы провести исследования), АБЛ вполне (хотя и не полностью) могут уже заменить человека сегодня: рас-смотренные методы обнаружения жизни вполне осуществимы в настоящее время с технической точки зрения. Именно  с их помощью можно рассчитывать не только на обнаружение инопланетных живых форм, но и на получение их опре-деленных характеристик.

Однако очевидно, что в отдельности ни одни из предложенных методов обнаружения не дает данных, допускающих однозначную интерпретацию с точки зрения наличия жизни.

Это отличается от методических экспериментов, предназначенных для измерения тех или иных физических параметров других небесных тел или меж-планетного пространства.

Многое показывает, что единственным подходом в проведении экзобио-логических исследований является создание АБЛ, в которой отдельные методы по обнаружению жизни могли бы конструктивно объединены, а их применение регламентировано единой программой функционирования АБЛ.

В настоящее время технически неосуществимо создание таких АБЛ, в ко-торых были бы представлены все известные методы обнаружения. Поэтому в за-висимости от конкретных целей, сроков запуска и времени жизни космических станций на поверхности планеты конструкции АБЛ имеют различный прибор-ный состав.

Пока еще биологические лаборатории предназначены для ответа на ос-новной вопрос о самом существовании жизни, и поэтому все предлагаемые про-екты АБЛ имеют целый ряд общих черт. В конструктивном отношении АБЛ должна иметь собственное заборное устройство или обеспечиваться образцами за счет заборного устройства, общего для всей космической станции, частью ко-торой является АБЛ. После забора образца он поступает в дозатор распредели-тель, а затем в инкубационное отделение, где при определенной температуре и освещении происходит выращивание микрофлоры и обогащение материала об-разца. Эти процессы можно вести в различных режимах, начиная от полного со-хранения первоначальных планетных условий и кончая созданием температуры, давления и влажности, близких к земным

В связи с этим в конструкции АБЛ предусматривается существование систем, наполняющих емкости под определенным давлением, систему вакуум-ных клапанов для отделения АБЛ от наружной атмосферы после забора пробы.

Необходимым элементом является и устройство для поддержания опре-деленной температуры как в блоке выращивания микроорганизмов, так и непо-средственно в измерительной ячейке, где производится снятие оптических пара-метров образца.

Через определенный промежутки времени, по мере развития микрофло-ры, материал образца в твердом и растворенном виде анализируется с помощью функциональных, а также некоторых аналитических методов. При этом предпо-лагается, что информация о наличии на планете общих предпосылок для сущест-вования жизни (температура, состав атмосферы, присутствие органических ве-ществ) должна быть получена с помощью дистанционных и аналитических ме-тодов.

Трудно переоценить тот вклад, который будет сделан в случае обнаруже-ния инопланетных форм жизни. Однако отсутствие жизни на планетах Солнеч-ной системы не исключает развития экзобиологии как науки, как не является препятствием на пути дальнейшего совершенствования методов автоматического обнаружения и снятия характеристик живых систем. Результаты этой области, являющейся частью биологического приборостроения, несомненно, найдут ши-рокое применение как в современной биологической науке, так и в других об лас-тях человеческой деятельности, не говоря уже о задачах освоения космического пространства и необходимости в связи с этим автоматического контроля за со-стоянием живых систем в этих условиях.

 

Практический обзор поиска и  исследований внеземных форм жизни.

 

В предыдущих главах рассмотрены теоретические аспекты проблемы по-иска и исследований внеземных форм жизни, теперь рассмотрим практическое решение этого вопроса. Хотя с момента полета первого человека в космос не прошло и 35 лет, но у ученых появилось столько новой информации о телах Сол-нечной системы, сколько ее не было за века исследований до этого, причем во много раз больше. Поток такой информации связан с наличием у современной науки таких помощников, как АБЛ (о них говорилось выше). Именно они своей работой на данный момент смогли заменить человека при исследовании планет Солнечной системы, где могла бы быть жизнь.

Нельзя забывать того, что если существующая где - то живая материя имеет иную качественную и структурную химическую организацию и, следова-тельно, в процессах питания, дыхания и выделения участвуют совершенно дру-гие вещества, положительный ответ автоматических аппаратов, работающих по программе земных критериев, вообще не может быть получен.

 

Для решения задач обнаружения жизни вне Земли нужна правильная по-становка вопросов (с учетом выше сказанного), которые можно разбить на три большие группы:

1. Обнаружение на планетах химических соединений, подобных амино-кислотам и белкам, которые обычно связываются с жизнью на Земле.

2. Обнаружение признаков обмена веществ - поглощаются ли питатель-ные вещества земного типа внеземными формами.

3. Обнаружение форм жизни, подобных земным животным, отпечатков жизненных форм в виде ископаемых или признаков цивилизации.

Хотя жизнь теоретически возможна на любой из планет, на их спутниках и на астероидах, наши возможности пока ограничены (в посылке аппаратуры) Луной, Марсом и Венерой.

 

Луна.

 

Большинство ученых считают Луну абсолютно “мертвой” (отсутствие атмосферы, различные излучения, не встречающие препятствия на пути к поверх-ности, большие перепады температуры и т. д.). Однако некоторые формы могут жить в тени кратеров, особенно если, как показывают последние наблюдения и исследования, там все еще протекает вулканическая деятельность с выделением тепла, газов и водяных паров. Вполне возможно, что, если жизни на Луне нет, то она может быть уже заражена, при несоблюдении ПК (хотя есть данные, показы-вающие обратное), земной жизнью после прилунения на ней космических аппаратов и кораблей и, возможно, метеоритами, если они могут явиться переносчи-ками жизни.

 

Венера.

 

Венера также, по - видимому, безжизненна, но по другим причинам. Со-гласно измерениям температуры на поверхности Венеры слишком высоки для жизни земного типа, а ее атмосфера также негостеприимна. Учеными обсужда-лось немало идей на эту тему. Авторы работ по данной теме касались возможно-сти существования биологически активных форм как на поверхности, так и в об-лаках. В отношении поверхности можно утверждать, что большинство органиче-ских молекул, входящих в состав биологических структур, испаряются при тем-пературах, намного меньших 5000С, в протеины изменяют свои естественные свойства. К тому же на поверхности нет жидкой воды. Поэтому земные формы жизни, по - видимому, можно исключить. Довольно искусственными представ-ляются другие возможности, включающие своего рода “биологические холо-дильники” или структуры на основе кремнийорганических соединений (как уже упоминалось выше).

Значительно более благоприятным представляются условия в облаках, соответствующие земным на уровне около 50 - 55 км. над Землей, за исключени-ем преобладающего содержания СО2 и практического отсутствия О2.

Тем не менее о облаках имеются условия для образования фотоаутотоф. Однако в условиях атмосферы существенная трудность связана с удержанием та-ких организмов вблизи уровня с благоприятными условиями, так чтобы они не увлекались в нижележащую горячую атмосферу. Чтобы обойти эту трудность, Моровиц и Салан выдвинули предположение в венерианских организмах в форме изопикнических баллонов  (фотосинтетических), заполняемых фотосинтетиче-ским водородом.

Это все пока только гипотезы, едва ли они могут рассматриваться как с точки зрения возникновения жизни в облаках, так и своего рода “остатков” био-логических форм, некогда существовавших на планете. Конечно, это не исключа-ет того, что в определенный период своей истории Венера обладала значительно более благоприятными условиями, пригодными для проявления биологической активности.

Спецификой эволюции, особенностями теплообмена, природой облаков, характером поверхности далеко не исчерпываются проблемы Венеры, продол-жающей, несмотря на огромные успехи, достигнутые за последние годы, в ее изучении, по праву сохранять за собой название планеты загадок.

Раскрытие этих загадок, несомненно, обогатит как планетологию, так и другие науки новыми фундаментальными открытиями. Мощность газовой обо-лочки, своеобразный тепловой режим, необычность собственного вращения и другие особенности резко выделяют Венеру из семьи планет Солнечной систе-мы. Что породило такие необычные условия? Является ли атмосфера Венеры “первичной”, свойственной молодой планете, или такие условия возникли позже, в результате необратимых геохимических процессов, обусловленных близостью Венеры к Солнцу, - эти вопросы заслуживают самого пристального внимания и требуют дальнейших всесторонних исследований, вплоть до пилотируемого по-лета к столь интересной планете.

 

Марс.

 

Самая исследуемая сейчас планеты, на которой ведутся поиски, Марс, но не все ученые соглашаются с тем, что на ней могут существовать какие - то формы жизни, некоторые считают Марс необитаемым. С учетом этого остано-вимся на этой планете подробней. Аргументы против жизни на Марсе убеди-тельны и хорошо известны, приведем некоторые.

 

Температура.

Средняя температура почти -550С (на Земле + 150С). температура всей планеты может упасть до рассвета до -800С. В середине марсианского лета близ экватора температура составила +300С, но, возможно, в некоторых областях по-верхность никогда не нагревается до 00С.

Атмосфера.

 

Как показали полеты “Маринеров”, общее давление лежит в области 3 - 7 мб (на Земле 1000 мб). При этом давлении вода будет быстро испаряться при низких температурах. Атмосфера содержит небольшое количество азота и арго-на, но главная масса - углекислота, что должно благоприятствовать фотосинтезу; но еще меньше в марсианской атмосфере кислорода. Правда, многие растения могут жить и без него, но для большинства земных он необходим.

 

Вода.

 

Наблюдая полярные шапки, астрономы сделали вывод, что они состоят из воды. Считалось, что они могут состоять из твердой углекислоты (сухого льда). В атмосфере не раз наблюдались облака различных типов, по - видимому, состоящих из ледяных кристаллов (вообще образование облаков на Марсе - ред-кость. Спектроскопически недавно была обнаружена вода, но влажность там должна быть очень низкой. Это может указывать на смачивание почвы влагой ат-мосферы, хотя такое явление бывает очень редко. Не видно движения жидкой во-ды по планете, хотя перемещение воды от полюса к полюсу действительно про-исходит (по мере таяния южной полярной шапки северная нарастает).

 

Ультрафиолетовое излучение.

 

Практически все ультрафиолетовое излучение Солнца проникает сквозь разреженную атмосферу до поверхности планеты, что пагубно влияет на все жи-вое (на земное, по крайней мере). Уровень космического излучения выше, чем на Земле, но по большинству расчетов он не опасен для жизни.

Тем не менее климат Марса, атмосфера отдаленно аналогичны земным. Эта планета свободна от заражения веществами земного происхождения. Поэто-му обнаружение жизни на ней наиболее вероятно.

 

Интересные наблюдения.

 

Не смотря на все эти доводы, ряд наблюдений говорит в пользу жизни на Марсе столь убедительно, что нельзя не упомянуть о них. Приведем некоторые из них.

Участки марсианской поверхности, которые ученые называют морями, обнаруживают все признаки жизни: во время марсианской зимы они тускнеют или почти исчезают, а с наступлением весны полярные шапки начинают отсту-пать, и тогда “моря” немедленно начинают темнеть; это потемнение продвигает-ся к экватору, тогда как полярная шапка отступает к полюсу. Трудно придумать этому явлению другое объяснение, кроме того, что потемнение вызывается вла-гой, возникшей при таянии полярной шапки.

Постепенное продвижение потемнения от края полярной шапки к эквато-ру совершается с постоянной скоростью, одинаковой из года в год. В среднем фронт потемнения движется к экватору со скоростью 35 км / сутки. Само по себе это невероятно, поскольку скорость ветра на поверхности Марса (движение жел-тых пылевых облаков) достигает 48 - 200 км / час и для него типична форма ги-гантских циклонов. Все это выглядит аномалией, если считать, что потемнение почвы обусловлено переносом влаги из полярных шапок атмосферными тече-ниями. Во всяком случае, физические теории, выдвигавшиеся до сих пор для объяснения этого явления, были отвергнуты.

Иногда марсианские “моря” покрываются слоем желтой пыли, но через несколько дней появляются снова. Если они состоят из марсианских организмов, эти организмы должны или прорасти  сквозь  пыль, или “стряхнуть” ее с себя. Поразительна “ плотность” марсианских “морей” сравнительно с окружающими их так называемыми “пустынями”. Если “моря” так хорошо фотографируются сквозь красный фильтр, то, значит, они состоят из организмов, покрывающих почву сплошным слоем (аналогично наблюдение наших пустынь с самолета с высоты, такой, чтобы отдельных растений нельзя было различить).

В марсианских “морях” и “пустынях” иногда быстрые, происходящие на протяжении нескольких лет изменения. Так, в 1953 г. появилась темная область величиной с Францию (Лаоконов узел). Она появилась там, где в 1948 г. была пустыня. Если такое нашествие на “пустыню” совершили марсианские растения, то они, очевидно, не просто существуют. Это наблюдение так поразительно, что можно подумать о Марсианском разуме, отвоевавшем для себя часть “пустыни” с помощью агротехники. Сделанные аппаратами “Маринер” снимки показывают, что в областях, называемых астрономами “морями”, кратеры расположены наи-более густо. Так или иначе - вероятно, что жизнь могла зародиться на дне крате-ров и затем перейти на возвышенности между ними. В очень хороших условиях видимости марсианские “моря” действительно распадаются на множество мел-ких деталей, но у нас нет оснований считать, что сейчас жизнь ограничивается дном марсианских кратеров, так как “моря” слишком обширны для такого объяс-нения.

Не так давно была выдвинута гипотеза (И. С. Шкловским) о том, что спутники Марса могут быть искусственными. Они двигаются по почти круговым, экваториальным орбита, и в этом смысле они отличаются от естественных спут-ников любой другой планеты Солнечной системы. Они находятся на близком расстоянии от Марса и по величине очень невелики (около 16 и 8 километров в диаметре). По всей видимости, их отражательная способность больше, чем у Лу-ны. Ускорение при движении одного из спутников происходит таким образом, что есть основание допустить, что спутники представляют полую сферу.

На поверхности Марса иногда наблюдаются очень яркие световые вспышки. Иногда они продолжаются по 5 минут, а вслед за этим возникает рас-ширяющееся белое облако. У некоторых ученых сложилось впечатление, что с 1938 года - первого известного такого случая - такое событие повторялось 10 - 12 раз. Яркость вспышки эквивалентна яркости взрыва водородной бомбы. Такой яркий голубовато - белый свет едва ли может быть вулканическим, а взрыв упав-шего метеорита не мог бы продолжаться так долго. Но в то же время вряд ли это термоядерный взрыв. Являются ли так называемые вспышки на поверхности Марса феноменов или каким - то продуктом разума? Для ответа на этот вопрос надо будет исследовать Марс непосредственно.

Каналы. Эти образования на Марсе долго были предметом спора как воз-можное доказательство разумной жизни. У этой замкнутой сети линий, которая становится видимой при благоприятных условиях в нашей атмосфере и на по-верхности Марса, должно быть объяснение. Первая особенность в том, что это замкнутая сеть, у которой лишь очень немногие линии попросту обрываются в “пустынях”, не присоединяясь ни к чему другому. Вторая - в том, что линии сет-ки пересекаются в темных пятнах, названных оазисами. На Луне нет ничего по-хожего. И эта сеть непохожа на линии сброса или трещины между кратерами (метеоритными) на поверхности Земли. Но города на дне кратеров наверняка бу-дут соединены сетью коммуникаций, включая подземную оросительную систему, вдоль которой располагаются ”фермы” (этим, может быть, объясняется ширина каналов - до 30 - 50 километров). Сейчас можно сказать, что наблюдавшиеся на Марсе серые линии необычно правильной геометрической формы - результат сложной и недостаточно исследованной оптической иллюзии, возникающей при наблюдении планеты, а также при фотографировании в слабые телескопы или при плохом качестве изображения. На снимках, полученных с космических стан-ций, сетка “каналов” на Марсе отсутствует, тем не менее отдельные квазилиней-ные естественные образования существуют. Но среди них крупные не имеют достаточно правильной формы, а мелкие ни при каких условиях не могли быть замечены с Земли.

Итак, мы имеем сложную сеть каналов, сезонные изменения окраски, спутники, яркие световые вспышки, за которыми следуют белые облака. Самое простое объяснение этому - на Марсе есть жизнь, по крайней мере могла бы быть. Исходя из выше сказанного и учитывая последние данные, можно предпо-ложить, что там, возможно, есть и разум. Эта возможность достаточна велика, чтобы оправдать всякие усилия для достижения Марса и исследования его по-верхности.

 

Метеориты.

 

Большой интерес представляют каменные метеориты, среди которых об-ращает на себя внимание немногочисленная группа так называемых углистых хондритов. Углистые метеориты содержат в себе много рассеянного углистого вещества и углеводороды. Содержание углерода в них может быть 5 %, а углерод, как известно, является важнейшей составной частью органической материи. Од-нако он может иметь и абиогенное происхождение. Именно абиогенное происхо-ждение и приписывалось углистому веществу метеоритов со времен Берцелиуса, исследовавшему в 1834 году метеорит АЛ7, упавший во Франции 15 марта 1806 года. В дальнейшем работами ученых многих стран установлено присутствие в углистых хондритах высокомолекулярных углеводородов парафинового ряда. Московский геохимик Г. П. Вдовкин (1961) при исследовании углистых метеори-тов Грозная и Миген обнаружил в первом вазелиноподобное вещество с арома-тическим запахом, а во втором битумы, близкие по составу к озокериту. Еще раньше (1890), вскоре после падения метеорита Миген (1889 г. в селе Миген на Херсонщине) Ю. Семашко в пробе из этого метеорита выявил 0. 23 % битумного вещества, названного эрделитом. В углистом метеорите Оргей, упавшем 14 мая 1864 г. во Франции, найдены углеводороды парафинового ряда, подобные содер-жащихся в пчелином воске и кожуре яблок. Озокерит же (горный песок) и пара-фин являются смесью углеводородов органического происхождения. Мало того, в результате экспериментов американский ученый Р. Берджер выяснил вообще фантастический факт. С помощью ускорителя он бомбардировал протонами смесь метана, аммиака и воды, охлажденную до -2300С. Через несколько минут в смеси обнаруживалась мочевина, ацетамид и ацетон - органические вещества, нужные для синтеза более сложных соединений. Напрашивается вывод, что в космосе, где имеются бесчисленные атомы разных элементов, облучаемых пото-ком радиации, могут образовываться и более сложные соединения вплоть до аминокислот, из которых состоит белок - основа жизни.

Почти все “организованные элементы (элементы органики) более всего по внешнему виду напоминают оболочки древних докембрийских одноклеточ-ных водорослей (протосферидий) - мелких сфероморфид, в также споры некото-рых фоссильных грибов (рис.   ). Протосферидии были широко распространены в верхнем протерозое (интервал абсолютной шкалы времени 1500 - 650 млн. лет) и реже в относительно более ранних отложениях раннего протерозоя (1500 - 2800 млн. лет). Интересны и данные советских ученых, установивших аргоновым ме-тодом возраст нескольких углистых и каменных метеоритов (в том числе Миген и Саратов). Он колеблется от 4600 млн. лет до 600 млн. лет. Примечательно, что многие специалисты (микробиологи, альгологи, микологи, палеологи), познако-мившись с “организованными элементами”, отказываются признавать их родство с земными организмами. Другие наоборот, полагают, что “организованные эле-менты” - остатки организмов, живших и угасших на Земле, после выброшенных в космос мощными вулканическими извержениями. Большинство исследователей основным источником метеоритов считают пояс астероидов. По существующей гипотезе астероиды возникли впоследствии разрушения некогда существовавшей крупной планеты Фаэтон, а “организованные элементы” представляют собой ос-татки биосферы этой гипотетической планеты.

Вокруг находок “организованных элементов” в метеоритах продолжают-ся жаркие споры, но все спорщики признают необходимость дальнейших иссле-дований.

 

Приборы для поиска.

 

Как сказано выше, прежде всего из - за ограниченных технических воз-можностей сейчас и в ближайшее время полеты автоматических аппаратов и за-тем пилотируемых кораблей могут производиться только на Луну, Венеру и Марс. Ученым многих отраслей наук прежде всего интересен Марс для выяснения от-ветов на вопросы наличия жизни, промышленного производства разнообразных материалов и возможного заселения этой планеты. Но прежде всего нужен ответ на вопрос - есть ли жизнь на Марсе?

Сегодня эту задачу могут выполнять автоматические межпланетные стан-ции, могущие сфотографировать небесное тело, при пролете над любым его уча-стком, а также по команде из Земли спустить исследовательский модуль (поса-дочный) и взять необходимые пробы грунта, вещества или атмосферы. Изучение этих материалов позволяет ученым сделать если не окончательный вывод, то хо-дя бы окончательные предположения в ответе на данный вопрос.

Большое значение в поисках внеземной жизни будут иметь и полеты кос-мических пилотируемых кораблей, оборудованных передовой техникой и прибо-рами с высадкой человека на исследуемые планеты или другие небесные тела.

 

Случай с “Викингами”.

 

В заключение главы приведем один из наиболее ярких примеров поиска внеземных форм жизни.

В 1976 г. НАСА в США проведен запуск двух автоматических межпла-нетных станций, одновременно являющихся АБЛ, с целью достигнуть Марс и провести на его поверхности ряд важнейших экспериментов. После съемок па-норам Марса АБЛ была извлечена часть грунта и проведено его сканирование (что обнаружило, помимо Fe, в грунте немало Si, Mg, Al, S, отмечено присутствие Rb, Sr,      , К и др.). “Викинги” приступили к главной программе исследований на поверхности планеты.

Известно, что организм живет, пока через него непрерывным потоком протекают все новые частицы окружающей его материальной среды. Поиском факторов обмена веществ и занимались марсианские АБЛ. Как и на земле, жизнь на Марсе может (не смотря на другие идеи) основываться на углероде - элементе, способным организовывать разнообразные химические соединения. Как сказано, земные организмы, поглощая при жизнедеятельности питательные вещества, вы-деляют различные газы. Логично предположить, что и невидимые марсиане по-ступают также. Гипотетическим инопланетянам предложили пищу, представлен-ную особыми специями. В сосуд с пробой грунта ввели питательный раствор с меченными атомами углерода. Если марсианские бактерии действительно усваи-вают углерод подобно земным, его радиоактивный изотоп должен встретиться в выделяемых ими газах.

Первые вести с Марса и обрадовали, и огорчили. Счетчик прибора АБЛ щелкал там значительно чаще, чем в земной лаборатории, где в контрольном экс-перименте “работали” реальные микроорганизмы. По словам руководителя науч-ной биологической программы доктора Клейна, полученную информацию можно будет толковать как наличие жизни.

На пятые сутки радиоактивность начала снижаться, возможно, закончи-лась пища. Если же это была химическая реакция, то затухание процесса могло бы означать лишь постепенное расходование вступившего в нее вещества грунта. Новая реакция питательного раствора не должна была в таком случае вызвать за-метного увеличения радиоактивности. Однако после добавления жидкости пока-зания счетчика возрастали так, как если бы оголодавшие бактерии вновь воспря-нули духом.

Еще больше волнений вызвали показания второго прибора, предназна-ченного для исследования газообмена предполагаемых живых организмов с ок-ружающей средой. Грунт, находящийся в атмосфере прибора, смачивали пита-тельным бульоном и подогревали. Периодически из камеры отбирались пробы воздуха для анализа. Всего через несколько суток вместо рассчитанных двена-дцати было зарегистрировано выделения кислорода, в более чем 15 - 20 раз пре-вышающее ожидаемое.

Сначала в поисках объяснения такого явления обвинили химию. Дейст-вительно, реакция сухого грунта с жидкостью могла происходить бурно. В каче-стве возможного кандидата на источник кислорода называли кристаллическую перекись водорода, которая могла содержаться в верхних слоях марсианской поч-вы.

За догадками (подчас рискованными) дело не стало: “Учитывая суровые условия на Марсе (температура в месте посадки менялась от -850С до +300С), не исключено, что живые организмы находятся в “спячке”, и им нужны соответст-вующие условия для возвращения к жизни. Обильное количество воды и пита-тельных веществ было бы пиршеством для этих микроорганизмов. Что же: хи-мия или биология? Выделение газов в обоих приборах длилось дольше, чем при химических реакциях, но меньше, чем в биологических процессах. Мы находим-ся где - то на середине” - констатировал один из ученых.

На Земле содержащие хлорофилл клетки под действием солнечных лучей образуют органические вещества из углекислого газа и воды. Не так ли исполь-зуют энергию светила и марсианская жизнь? В марсианский воздух заполнивший сосуд с грунтом, добавили немного радиоактивного изотопа углерода. Чтобы микробы, если они есть, чувствовали себя как дома, над ними зажгли лампу, ими-тирующий характерный для Марса солнечный свет. Инкубация длилась двое су-ток, клеткам давали возможность хорошо усвоить меченный углерод.  После ка-меру очистили от газов, а грунт нагрели до 6000С, при этом из него должны были улетучится образованные при фотосинтезе органические вещества с меченными атомами, а счетчик радиоактивных частиц - подсчитать их результаты.

Зарегистрированный в эксперименте уровень радиоактивности в 6 раз превысил тот, который наблюдался бы при отсутствии в грунте микроорганиз-мов.

Окончательно отнести это что - то к живой или мертвой природе должны были помочь контрольные опыты в земной лаборатории. Если эти данные были бы получены на Земле, был бы сделан безусловный вывод о получении слабого биологического сигнала, но по данным с Марса ученые не хотели делать по-спешных выводов. В имитирующих Марс на Земле лабораториях было проведе-но несколько опытов на выявление жизни, результаты - абсолютно идентичны полученным с Марса.

Выдвинуты многие гипотезы, среди которых - то, что хотя “Викинги” проводили эксперименты на колоссальном расстоянии друг от друга, они находи-лись в местах, богатых розовой пылью и поэтому неподходящих для жизни.

Астроном К. Сагал не исключает наличия жизни на Марсе в виде изоли-рованных оазисов. Мнения ученых разделились “пятьдесят на пятьдесят”. Про-водились новые эксперименты с привлечением новых специалистов. В результате предпочтение отдали неживой природе. Основной причиной наблюдаемых явле-ний названо солнечное излучение, не встречающее на Марсе защитного озоново-го слоя (опять же - только гипотеза).

Готовые формы жизни - клетки и примитивные организмы - складывают-ся из особых материалов, построенных на основе углерода. Их наличие или от-сутствие должно быть, пожалуй, самым серьезным аргументом в споре ученых.

Тот же К. Саган, не смотря на это обстоятельство, считает, что оазисы жизни на Марсе могут быть необычными и причудливыми по внешнему виду и химическому составу, и по поведению, так что их невозможно идентифицировать как жизнь с наших представлений (жизнь на основе других элементов, кроме уг-лерода, рассматривалась выше). На Марсе органическое вещество могло поя-виться в результате химических процессов в атмосфере и на поверхности плане-ты. Могли занести его и метеориты.

И, наконец, без органики не могли обойтись ни давно угасшая, ни суще-ствующая жизнь.

Окончательно ответить на вопрос о жизни на Марсе смогут ученые после проведения ими непосредственно исследований на поверхности планеты.

 

Поиск внеземных цивилизаций.

 

Ранее рассматривалось проявление жизни вне Земли на любом уровне ее развития как само замечательное явление. Но поиски жизни ведутся и на более высоком уровне разума, другими способами. Разум ассоциируется с понятием цивилизация. Сейчас не исключается наличие внеземных цивилизаций (ВЦ), что вызывает надежды и желание ученых в установлении контакта с ними.

Один из способов поиска ВЦ - радиоастрономический, заключается в по-даче радиосигналов из земли в определенные участки Вселенной. Сигналы со-держат информацию о землянах и нашей цивилизации и вопросы о характере другой цивилизации и предложение установить взаимный контакт.

Второй способ продемонстрирован при запуске автоматических межпла-нетных станций для исследования внешних планет Солнечной системы, “Пионе-ров” и “Вояджеров”, которые при предполагаемой встрече с ВЦ (пролетев мимо внешних планет и оказавшись в межзвездном пространстве) несли подробные сведения о нашей цивилизации, дружественные пожелания инопланетянам, то есть делалось предположение, что при возможной встречи земных аппаратов ВЦ сможет расшифровать послание землян, и, возможно, пожелает вступить с нами в контакт.

 

Выводы.

 

1. Поиск чужеродных форм вне Земли имеет большое значение для раз-работки фундаментальных проблем, связанных с выяснением проис-хождения и сущности жизни.

2. При сохранении планетарного карантина планеты будут сохранены как биологические заповедники для дальнейших научных исследований, а Земля будет защищена от опасных пришельцев из космоса.

3. Трудно переоценить вклад в развитие науки, который будет сделан при обнаружении инопланетных форм жизни, однако и отсутствие жизни на других планетах Солнечной системы не только исключает развитие экзобиологических исследований, но и является препятствием на пути дальнейшего совершенствования методов автоматического и с помо-щью человека обнаружения и снятия характеристик живых систем. Ре-зультаты в этой области, являющейся частью биологического приборо-строения, несомненно, найдут широкое применение в современной биологии и других областях человеческой деятельности, не говоря уже о задачах освоения космического пространства.

4. В настоящее время мы знаем только нашу жизнь, и от нее мы должны исходить в суждениях о других возможных формах биологической ор-ганизации.

5. Люди должны быть готовы к встрече с возможно неоднозначной, не-предсказуемой, доселе невиданной другой жизнью, а значит и разумом.

6. Поиски жизни вне Земли являются лишь частью стоящего перед нау-кой более общего вопроса о возникновении жизни во Вселенной.