Голосования

Какой теорией происхождения жизни вы придержавайтесь?
 

Узнал новое?

Поделись с друзьями:

Наша кнопка

88x31 Код




Черные дыры и младенцы-вселенные
(1 голос, среднее 5.00 из 5)
Космос и Вселенная

Падение в черную дыру стало одним из ужасов научной фантастики. Па самом деле о черных дырах сейчас можно сказать, что это научный факт, а не фантастика. Как я покажу ниже, есть достаточные основания утверждать, что черные дыры должны существовать, и наблюдения четко указывают на присутствие в нашей Галактике множества черных дыр, а в других галактиках их еще больше.

Конечно, описывать, что происходит, когда надаешь в черную дыру, — это поистине раздолье для фантастов. Обычно предполагают, что если черная дыра вращается, то можно провалиться через дырочку в пространстве-времени и оказаться в другой части Вселенной. Это дает большие возможности для путешествий в космосе. И в самом деле, если путешествия на другие звезды, не говоря уж о других галактиках, в будущем окажутся осуществимыми на практике, нам понадобится нечто подобное. В противном случае тот факт, что ничто не может двигаться быстрее света, растянет путешествие к ближайшей звезде по меньшей мере лет на восемь. Многовато, чтобы провести выходные на Альфе Центавра! А вот если суметь нырнуть в черную дыру, то можно вынырнуть в любой точке Вселенной. Правда, не совсем ясно, каким образом выбрать место назначения: вы можете решить съездить на праздники в Вирго, а окажетесь в Крабовидной туманности.

Мне жаль разочаровывать галактических туристов, но этот сценарий не работает: если вы прыгнете в черную дыру, вас разорвет на части и расплющит так, что от вас ничего не останется. Однако в некотором смысле частицы, составляющие ваше тело, окажутся в другом мире. Не знаю, утешится ли превратившийся в спагетти в черной дыре сознанием того, что его частицы, возможно, уцелели.

Несмотря на мой легкомысленный тон, это эссе основано на строгой науке. С тем, что я здесь говорю, в основном согласно большинство других ученых, работающих в данной области, хотя к этому согласию они пришли не так уж давно. Однако последняя часть данного эссе основывается на совсем недавней работе, по которой пока что нет общего согласия. Но она вызывает большой интерес и привлекает к себе внимание. Хотя понятие, называемое ныне черной дырой, появилось более двухсот лет назад, само название «черная дыра» было введено лишь в 1967 году американским физиком Джоном Уилером. Здесь была определенная доля гениальности: такое название гарантировало, что черные дыры войдут в мифологию научной фантастики. Оно также стимулировало научные исследования, дав имя тому, что раньше не имело удовлетворявшего всех названия. Не надо недооценивать важность хорошего имени в науке.

Насколько мне известно, первым начал обсуждать черные дыры некто по имени Джон Мичелл из Кембриджа, который в 1783 году написал о них статью. Его идея была такова. Предположим, с поверхности Земли вы выстрелили ядром из пушки вертикально вверх. По мерс подъема оно будет замедляться силой притяжения. В конце концов ядро остановится и начнет падать обратно. Однако если оно вылетит из пушки со скоростью больше некоторой критической величины, то никогда не остановится и не упадет, а продолжит свое движение вверх. Эта критическая скорость называется скоростью убегания, и для Земли она составляет 7 миль в секунду, а для Солнца — около 100 миль в секунду. Обе эти величины больше, чем скорость пушечного ядра, но гораздо меньше скорости света, равной 186 000 миль в секунду. Это означает, что гравитация не оказывает на свет существенного влияния, и он может без труда оторваться и от Земли, и от Солнца. Однако Мичелл сделал умозаключение, что может существовать звезда, достаточно массивная и достаточно маленькая по размеру, чтобы ее скорость убегания оказалась больше скорости света. Мы не сможем увидеть такую звезду, потому что свет с ее поверхности до нас не дойдет, а будет притягиваться обратно гравитационным полем. Однако ее присутствие можно обнаружить по воздействию ее гравитационного поля на окружающую материю.

На самом деле свет не совсем корректно сравнивать с пушечным ядром. Согласно эксперименту, проведенному в 1897 году, свет всегда движется с постоянной скоростью. Тогда как же гравитация может его замедлить? Стройной теории, как гравитация влияет на свет, не было до 1915 года, когда Эйнштейн сформулировал свою общую теорию относительности. ИI даже после этого выводы из его теории для старых звезд и других массивных тел не были сделаны до шестидесятых годов.

Согласно общей теории относительности, время и пространство вместе можно рассматривать как единое четырехмерное пространство, получившее название пространство-время. Это пространство не плоское, оно искажается, или искривляется, материей и заключенной в ней энергией. Мы наблюдаем это искривление по отклонению света и радиоволн, проходящих по пути к нам мимо Солнца. Когда свет проходит вблизи Солнца, отклонение очень мало. Однако если бы Солнце сжалось до размеров всего нескольких миль в поперечнике, отклонение было бы столь велико, что свет не смог бы улететь, а был бы притянут гравитационным полем. Согласно теории относительности, ничто не может двигаться быстрее света, поэтому образуется область, откуда не может вырваться ничто. Такая область называется черной дырой, а ее границы — горизонтом событий. Его образует свет, едва не вырвавшийся из черной дыры, но оставшийся парить на краю.

Предположение, что Солнце может сжаться до диаметра в несколько миль, может показаться смешным. Трудно допустить, что материя способна сжаться до такой степени. Но оказывается — способна.

Солнце имеет такие размеры, потому что оно горячее. Оно пережигает водород в гелий, как управляемая водородная бомба. Тепло, выделяемое в результате этого процесса, создает давление, позволяющее Солнцу противостоять собственной гравитации, которая стремится сжать его, сделать меньше.

Однако в конце концов у Солнца кончится ядерное топливо. Этого не случится еще примерно пять миллиардов лет, так что можно не спешить заказывать билет на другую звезду. Тем не менее звезды более массивные, чем Солнце, пережгут свой водород гораздо быстрее.

Когда топливо у них кончится, они начнут остывать и сжиматься. Если их масса по крайней мере вдвое превышает массу Солнца, они в конце концов прекратят сжиматься, и состояние их стабилизируется. Одни звезды в таком состоянии называются белыми карликами. Белый карлик имеет радиус в несколько тысяч миль и плотность в сотни тонн на кубический дюйм. Другие звезды в таком состоянии называются нейтронными звездами. Они имеют радиус около 10 миль и плотность в миллион тонн на кубический дюйм.

Мы наблюдаем большое число белых карликов в непосредственной близости от нашей Галактики. Нейтронные же звезды не наблюдались до 1967 года, пока Джойселин Белл и Энтони Хьюиш из Кембриджа не открыли объекты, названные пульсарами, которые испускали радиоволны регулярными импульсами. Сначала исследователи подумали, уж не установили ли они контакт с чужой цивилизацией, — я даже помню, что аудитория, где они объявили о своем открытии, была разукрашена фигурками «зеленых человечков». Однако под конец они сами и все остальные пришли к менее романтическому заключению, что эти объекты — вращающиеся нейтронные звезды. Такое заключение оказалось плохой новостью для создателей космических вестернов, но хорошей для нас, тех немногих ученых, кто верил тогда в черные дыры. Если звезды могут сжиматься до таких малых размеров, как 10 или 20 миль в поперечнике, и становиться нейтронными звездами, можно предположить, что другие смогли сжаться еще больше и превратиться в черные дыры.

Звезда с массой примерно вдвое больше массы Солнца становится белым карликом или нейтронной звездой. В некоторых случаях звезда может взорваться и выбросить достаточно материи, чтобы ее масса стала меньше предельной. Но это случается не всегда. Некоторые звезды станут очень маленькими, и их гравитационное поле так искривит свет, что он упадет обратно на звезду. И больше ни свет, ни что-либо другое не сможет вырваться оттуда. Такие звезды станут черными дырами.

Физические законы симметричны во времени. Поэтому если существуют объекты, называемые черными дырами, в которые все может падать, но ничто не может вырваться, должны быть и другие объекты, из которых все может вылететь, но ничто не может в них упасть. Можно назвать их белыми дырами. Можно также порассуждать о том, что если прыгнуть в черную дыру в одном месте, то выйдешь из белой дыры в другом. Это был бы идеальный метод для вышеупомянутых дальних космических путешествий. Все, что вам понадобится, — это отыскать поблизости черную дыру.

На первый взгляд такая форма космических путешествий кажется возможной. В общей теории относительности Эйнштейна существуют решения, согласно которым можно упасть в черную дыру и выйти из белой дыры. Однако более поздняя работа показала, что все эти решения очень нестабильны: малейшее возмущение, такое как присутствие космического корабля, уничтожит «отверстие» — проход, ведущий из черной дыры в белую. Космический корабль был бы разорван бесконечно большими силами. Это вроде того, как путешествовать по Ниагаре в бочке.

После этого надежды почти не осталось. Черные дыры можно было бы использовать разве что для избавления от мусора или даже от некоторых друзей. Они были «страной, откуда не возвращаются». Однако все, что я сказал до сих пор, основывалось на расчетах, использующих общую теорию относительности Эйнштейна. Эта теория прекрасно согласуется со всеми нашими наблюдениями. Но мы знаем, что она не может быть совершенно права, поскольку не охватывает принцип неопределенности квантовой механики. Принцип неопределенности гласит, что частицы не могут одновременно иметь и четко определенного положения, и четко определенной скорости. Чем точнее измеряешь положение частицы, тем менее точно измеряешь скорость, и наоборот.

В 1973 году я начал исследования, пытаясь выяснить, какое значение имеет принцип неопределенности для черных дыр. К моему, да и ко всеобщему великому удивлению, обнаружилось, что вследствие этого принципа черные дыры должны быть не совсем черными. Они постоянно выделяют излучение и частицы. Когда я доложил о своих результатах на конференции под Оксфордом, они вызвали общее недоверие. Председатель сказал, что это нонсенс, и написал об этом статью. Однако, когда другие повторили мои расчеты, они обнаружили тот же самый эффект. Так что под конец даже председатель согласился с моей правотой.

Как может излучение вырваться из гравитационного поля черной дыры? Есть много путей понять это. И хотя они кажутся очень разными, на самом деле они эквивалентны. Один путь — осознать, что принцип неопределенности позволяет частицам на короткой дистанции двигаться быстрее света. Это, в свою очередь, позволяет им и излучению прорваться через горизонт событий и вырваться из черной дыры. Следовательно, из черной дыры что-то может исходить. Однако то, что выходит, будет сильно отличаться от того, что туда упало. Той же самой будет только энергия.

Поскольку черная дыра испускает частицы и излучение, она должна терять массу. От этого черная дыра должна становиться меньше и эмиттировать частицы с большей частотой. В конце концов она дойдет до нулевой массы и совсем исчезнет. Что же тогда случится с объектами, упавшими в черную дыру, включая, возможно, и космические корабли? Согласно некоторым моим недавним работам, ответ таков: они перейдут в собственную новорожденную вселенную. Маленькая замкнутая вселенная возникает из нашей области Вселенной. Эта вселенная может снова присоединиться к нашей области пространства-времени, при этом она покажется нам другой черной дырой, которая появилась, а потом испарилась. Частицы, упавшие в одну черную дыру, покажутся частицами, выпущенными из другой, и наоборот.

Звучит так, будто именно это и требуется, чтобы позволить космические путешествия через черные дыры. Вы просто направляете свой космический корабль в подходящую черную дыру. Впрочем, лучше в дыру побольше, а то гравитационные силы разорвут вас на части, превратив в спагетти, прежде чем вы проникнете внутрь. Потом вам останется надеяться, что вы появитесь вновь из какой-то другой дыры, но где — вы выбирать не сможете.

Однако в такой схеме межгалактической транспортации существует загвоздка. Младенцы-вселенные, принимающие упавшие в дыру частицы, оказываются в так называемом мнимом времени. В реальном времени астронавта, упавшего в черную дыру, ждет неприятный конец. Его разорвет на части из-за разницы в гравитационных силах между головой и ногами. Не уцелеют даже частицы, составляющие его тело. Их истории в реальном времени закончатся в сингулярности. По во мнимом времени продолжатся. Они войдут в новорожденную вселенную и снова появятся как частицы, выпущенные другой черной дырой. Так что, в некотором смысле, астронавт перенесется в другую область Вселенной. Однако появившиеся частицы будут мало напоминать астронавта. А тот факт, что частицы уцелели во мнимом времени, будет для него слабым утешением, потому что в реальном времени он войдет в сингулярность. Девизом падающих в черную дыру должно быть: «Мыслите мнимо!»

Чем определяется то место, где частицы появятся вновь? Число частиц в младенческой вселенной будет равно числу частиц, упавших в черную дыру, плюс число частиц, выпущенных ею за время испарения. Это означает, что частицы, упавшие в черную дыру, выйдут из другой дыры, имеющей примерно ту же массу. Таким образом, можно попытаться выбрать, где частицы выйдут, создав черную дыру той же массы, как та, куда они зашли. Однако эта черная дыра может с таким же успехом выдать любой другой набор частиц с той же суммарной энергией. Даже если бы черная дыра выдала частицы нужного вида, нельзя было бы сказать, те ли это частицы, что вошли в другую дыру. У частиц нет удостоверения личности — все частицы данного вида выглядят одинаково.

Из всего этого следует, что прохождение через черную дыру вряд ли окажется популярным и надежным способом космических путешествий. Во-первых, вам придется попасть туда, перемещаясь во мнимом времени и не заботясь о том, что ваша история в реальном времени печально закончилась. Во-вторых, на самом деле вы не смогли бы выбрать место назначения. Это все равно что лететь по какой-то авиалинии, что взбрела вам в голову.

Возможно, молодые вселенные не будут использованы для космических путешествий, но они могут иметь большое значение в наших попытках построить завершенную единую теорию, которая опишет все во Вселенной. Существующие ныне теории содержат много величин, таких как размер или электрический заряд частицы. Значения этих величин наши теории не могут предсказать, они должны выбираться на основании наблюдений. Большинство ученых, однако, верят, что под всем этим лежит единая теория, которая предскажет все значения.

Такая основополагающая теория может быть. Сильнейший кандидат в настоящий момент носит название неоднородной сверхструнной теории. Ее идея заключается в том, что пространство-время наполнено маленькими петлями, вроде кусочков струны. То, что нам представляется элементарными частицами, на самом деле является маленькими петельками, по-разному вибрирующими. Данная теория не содержит никаких величин, значения которых можно уточнить. Поэтому можно предположить, что эта единая теория сможет предсказать значения всех величин, вроде электрического заряда частиц, еще не определенных в наших нынешних теориях. И хотя ни одну из указанных величин нам пока не удалось вывести из сверхструнной теории, многие верят, что в конце концов мы сможем это сделать.

Однако если данная картина младенцев-вселенных верна, наша способность предсказывать указанные величины будет снижена, потому что мы не можем наблюдать, сколько черных дыр существует во внешнем мире, ожидая своей очереди присоединиться к нашей области Вселенной. В природе могут быть вселенные, содержащие всего несколько частиц. Эти вселенные так малы, что невозможно заметить их присоединения к нашему закоулку. Но присоединившись, они изменят видимые значения величин, таких как электрический заряд частиц. Следовательно, мы не можем предсказать, каково будет видимое значение этих величин, так как не знаем, сколько вселенных ожидают своей очереди снаружи. Возможен взрыв рождаемости вселенных. Однако, в отличие от людей, у них, похоже, не будет ограничивающих факторов, таких как пропитание и место под солнцем. Младенцы-вселенные существуют в своем собственном царстве. Это напоминает вопрос, сколько ангелов может танцевать на кончике иглы.

Для большинства величин эти вселенные, похоже, введут конечную, хотя и довольно маленькую, неопределенность в предсказанных значениях. Однако они могут объяснить наблюдаемые значения очень важных величин — так называемых космологических констант. Это термин из уравнений общей теории относительности, дающий пространству-времени врожденную склонность расширяться или сжиматься. Первоначально Эйнштейн предложил для космологических констант очень малые значения в надежде уравновесить эту склонность материи, заставляющую Вселенную сжиматься. Такая мотивация исчезла, когда обнаружилось, что Вселенная расширяется. Но от этих констант оказалось не так-то просто избавиться. Можно было предположить, что флюктуации, подразумеваемые квантовой теорией, делают космологические константы очень большими. И все же мы можем наблюдать, как расширение Вселенной изменяется со временем, и таким образом определить, что они очень малы. До сих пор не было удовлетворительного объяснения, почему наблюдаемое значение должно быть таким маленьким. Однако младенцы-вселенные, отпочковываясь и присоединяясь, будут влиять на наблюдаемое значение космологических констант. Поскольку мы не знаем, сколько таких вселенных существует, наблюдаемые космологические константы будут иметь различные возможные значения. Однако гораздо более вероятны значения, близкие к нулю. И это удача, потому что Вселенная годится для таких существ, как мы, только если они очень малы.

Подведем итог: представляется, что частицы могут падать в черную дыру, которая затем испаряется и исчезает из нашей области Вселенной. Частицы выходят во вселенные, которые отпочковываются от нашей Вселенной. Эти вселенные могут затем присоединиться где-нибудь еще. Возможно, они не пригодятся для космических путешествий, но их наличие означает, что мы сможем предсказать меньше, чем ожидали, даже если построим завершенную единую теорию. С другой стороны, теперь мы, возможно, сумеем объяснить измеренные значения некоторых величин, вроде космологических констант. В последние несколько лет многие ученые начали работать над младенцами-вселенными. Не думаю, что кто-нибудь сколотит себе состояние, запатентовав их как способ космических путешествий, но они уже стали захватывающей областью исследований.